Puissances

Puissances d'un nombre relatif

1) Puissance d'exposant positif

Définition

Soit a un nombre relatif et n un nombre entier supérieur ou égal à 1.

 a^n se lit « a exposant n » ou « a puissance n » est le nombre a multiplié par lui-même n fois.

$$a^{n} = \underbrace{a \times a \times a \times ... \times a}_{n \text{ facteurs}}$$

Exemples

$$2^4 = 2 \times 2 \times 2 \times 2 = 16$$

$$(-3)^3 = (-3) \times (-3) \times (-3) = -27$$

Vocabulaire

 $\rightarrow a^2$ se lit « a au carré ». $\rightarrow a^3$ se lit « a au cube ».

Cas particuliers

Si n = 0

$$a^0 = 1$$

Exemples

$$7^0 = 1 \ (-2020)^0 = 1$$

Si n = 1

Exemples

$$a^1 = a$$

$$12^1 = 12$$

$$12^1 = 12$$
 $(-17)^1 = -17$

Propriété

Soient *a* un nombre positif et *n* un nombre entier.

- Si *n* est pair alors $(-a)^n$ est un nombre **positif**.
- Si *n* est impair alors $(-a)^n$ est un nombre **négatif**.

Exemples

$$(-2)^4 = (-2) \times (-2) \times (-2) \times (-2) = 16$$
 (4 est pair, le produit de 4 facteurs négatifs est positif)

$$(-5)^3 = (-5) \times (-5) \times (-5) = -125$$

Le produit de 3 facteurs négatifs (3 est impair)

Cours 3^{ème}

Remarque

$$(-a)^{n} = (-a) \times (-a) \dots \times (-a)$$

$$-a^{n} = -(a \times a \times \dots \times a)$$

$$n \text{ facteurs}$$

Exemples

$$(-7)^2 = (-7) \times (-7) = 49$$
 et $-7^2 = -7 \times 7 = -49$

2) Puissance d'exposant négatif **Définition**

Soit a un nombre entier relatif différent de 0 et n un entier supérieur à 1.

$$a^{-n}=\frac{1}{a^n}$$

 a^{-n} est l'inverse de a^{n}

Exemples

$$a^{-1} = \frac{1}{a^1} = \frac{1}{a}$$
 a^{-1} est l'inverse de a .

$$4^{-3} = \frac{1}{4^3} = \frac{1}{64}$$

II-Formules et méthodes de calcul

Soient a et b deux nombres relatifs non nuls, m et n deux entiers.

$$a^n \times a^m = a^{n+m}$$

$$\frac{a^n}{a^m}=a^{n-m}$$

$$(a^n)^m = a^{n \times m}$$

$$\frac{a^n}{a^m} = a^{n-m} \qquad (a^n)^m = a^{n \times m} \qquad a^n \times b^n = (a \times b)^n$$

Il est utile d'apprendre ces formules pour faciliter les calculs mais on peut tout de même parvenir au résultat en utilisant uniquement la définition de la puissance.

Exemples

Calculer en utilisant des formules	Calculer en utilisant la definition de la puissance
$2^{3} \times 2^{2} = 2^{(3+2)} = 2^{5}$	$2^3 \times 2^2 = 2 \times 2 \times 2 \times 2 \times 2 = 2^5$
$\frac{4^{5}}{4^{7}} = 4^{5-7} = 4^{-2} = \frac{1}{4^{2}} = \frac{1}{16}$	$\frac{4^{5}}{4^{7}} = \frac{4 \times 4 \times 4 \times 4 \times 4}{4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 4} = \frac{1}{4 \times 4} = \frac{1}{4^{2}} = 4^{-2} = \frac{1}{16}$
$(3^2)^4 = 3^{(2\times4)} = 3^8$	$(3^2)^4 = (3 \times 3)^4 = (3 \times 3) \times (3 \times 3) \times (3 \times 3) \times (3 \times 3) = 3^8$
$5^2 \times 4^2 = (5 \times 4)^2 = 20^2$	$5^2 \times 4^2 = 5 \times 5 \times 4 \times 4 = (5 \times 4) \times (5 \times 4) = 20 \times 20 = 20^2$

III- Puissances de 10

Les puissances de 10, d'exposants positifs ou négatifs, permettent une écriture facile des très grands et des très petits nombres.

Définitions

Soit *n* un entier positif supérieur ou égal à 1.

$$10^{n} = 10 \times 10 \times ... \times 10 = 100 ... 0$$

$$10^{-n} = \frac{1}{10^{n}} = \frac{1}{100 ... 0} = 0,00 ... 1$$

$$10^{0} = 1 10^{1} = 10$$

Exemples

$$10^3 = 10 \times 10 \times 10 = 1000$$

$$10^{-4} = \frac{1}{10 \times 10 \times 10 \times 10} = \frac{1}{10000} = 0,0001$$

Propriétés

Soient m et n deux entiers

$$10^{n} \times 10^{m} = 10^{n+m}$$
 $\frac{10^{n}}{10^{m}} = 10^{n-m}$ $(10^{n})^{m} = 10^{n \times m}$

Exemples

Calculer en utilisant des formules	Calculer en utilisant la définition de la puissance		
$10^3 \times 10^2 = 10^{(3+2)} = 10^5$	$10^3 \times 10^2 = 1\ 000 \times 100 = 100\ 000 = 10^5$		
$\frac{10^5}{10^7} = 10^{5-7} = 10^{-2} = 0.01$	$\frac{10^5}{10^7} = \frac{10 \times 10 \times 10 \times 10 \times 10}{10 \times 10 \times 10 \times 10 \times 10 \times 10} = \frac{1}{10^2} = 10^{-2}$		
$(10^2)^4 = 10^{(2\times4)} = 10^8 = 100\ 000\ 000$	$(10^2)^4 = (10 \times 10)^4$ = $(10 \times 10) \times (10 \times 10) \times (10 \times 10) \times (10 \times 10)$ = $10^8 = 100\ 000\ 000$		

IV- Notation scientifique

Définition

La notation scientifique est une façon de représenter un nombre.

On dit qu'un nombre est écrit en notation scientifique s'il est sous la forme $\pm a \times 10^n$ avec :

- \rightarrow a est un nombre décimal tel que $1 \le a < 10$
- > n est un entier relatif

Cours 3^{ème} www.mathema-kic.com

Exemples

$$2.6 \times 10^{-11}$$
 -3.5×10^{7}
Ce sont des écritures scientifiques.

$$123,12\times10^{5}$$
 $-13,7\times10^{15}$

Ce ne sont pas des écritures scientifiques.

Application: Ecrire 0.002×10^6 en notation scientifique.

<u>Réponse</u> : $0,002 \times 10^6 = 2 \times 0,001 \times 1000000 = 2 \times 1000 = 2 \times 10^3$.

Utilité

La notation scientifique d'un nombre permet de connaître immédiatement l'ordre de grandeur de ce nombre. Celle-ci est utilisée dans plusieurs domaines scientifiques notamment à l'échelle microscopique et macroscopique.

Voici quelques préfixes d'unités de mesure et les puissances de 10 correspondantes :

Préfixe	giga	méga	kilo	hecto	déca	déci	centi	milli	micro	nano
Notation	G	М	k	h	da	d	С	m	μ	n
Puissance de 10	10 ⁹	10 ⁶	10 ³	10 ²	10	10 ⁻¹	10-2	10-3	10 ⁻⁶	10 ⁻⁹

Exemples

Exemples	Ecriture scientifique	Ordre de grandeur
La vitesse de la lumière	$2,99 \times 10^8 m/s$	10 ⁸ <i>m</i> /s
La distance terre-soleil	$1,49 \times 10^8 km$	10 ⁸ km
Rayon d'un atome d'hydrogène	$5,3 \times 10^{-11}m$	$10^{-11} m$
La masse d'un atome d'hydrogène	$1,66 \times 10^{-27} kg$	$10^{-27} kg$
La taille maximale d'une bactérie	$4 \mu m = 4 \times 10^{-6} m$	10 ⁻⁶ m